The invention of the telescope has been credited to Hans Lippershey, a Dutch spectacle maker.
Molecular Expressions: Science, Optics and You - Timeline - Hans Lippershey < click
allegedly, Galileo had heard that a Dutchman had devised an instrument composed of two lenses that made objects appear closer. Not wanting to be scooped, Galileo quickly came up with his own version and:
"In August 1609 he invited the Venetian senate to inspect his own 'spy-glass' which, through a combination of a convex and concave lens, was able to magnify objects nine times greater than normal vision. The senate was greatly impressed, particularly by his suggestion that in matters of defense it would enable them to see the sails of ships two hours before they could be seen by the naked eye. When he presented his spy glass to them as a present they expressed their appreciation by doubling his salary to a thousand scudi a year and guaranteeing his position at Padua for the rest of his life. No doubt he felt some embarrassment when local spectacle makers were soon able to replicate his instruments for just a few scudi, but he committed himself to improving the power of his instruments and began to turn his attention to the heavens.
In March of the following year, 1610, he published Sidereus Nuncius, the 'Messenger of the Stars', which revealed the fruits of his observations. The tract was kept deliberately short in order to make it widely accessible and the style of language was uniquely devoid of philosophy. Combined with explosive contents, it made a remarkable impact worldwide. He wrote about the surface of the Moon, dismissing the common view that it was perfectly smooth, and describing it as full of lofty mountains and deep hollows. He wrote about the fixed stars, and told how he had witnessed "other stars, in myriads, which have never been seen before, and which surpass the old, previously known stars in number more than ten times". Most importantly, he wrote of his discovery of four new planets, the Moons of Jupiter which had never been imagined before.
With this, he justified his first ever 'outing' of his heliocentric beliefs, writing:
"Moreover, we have an excellent and exceedingly clear argument to put at rest the scruples of those who can tolerate the revolution of the planets about the Sun in the Copernican system, but are so disturbed by the revolution of the single moon around the earth while both of them describe an annual orbit around the Sun, that they consider this theory to be impossible."6
Galileo was assembling the ammunition to mount the final assault on the geocentric model. That objects could orbit Jupiter instead of the Earth, showed that the Earth could in no way be considered the sole center of the universe. A page from Galileo's journal showing some observations of the movements of the moons of Jupiter:
The Fall of the Geocentric Theory < click
......
The Copernican Revolution
In the fifteenth century, a reform of European astronomy began. This was due to the fact that predictions made using the Ptolemaic system were less and less accurate. With the advent of ocean-going vessels, and the expansion of global trade and exploration, navigation using astronomical knowledge had become extremely important. Also, the calendar implemented in 44 BC by Julius Caesar was 10 days off, with the spring equinox now occurring on the 11th of March instead of the 21st (used to fix the date of Easter). Astronomical help was needed! Two astronomers, Peurbach and Regiomontanus (who set up the first European observatory at Nuremburg in 1474) took on the task of locating errors in the works of Ptolemy, as well as errors in published tables and in observations. They had refined some of astronomy, but they had not gotten rid of all of the mounting problems.
Copernicus (1473 to 1543) learned of the works of Peurbach and Regiomontanus while an undergraduate at the University of Cracow (Poland), then spent eight years studying in Italy (five years in Bologna studying liberal arts, and three years at the University of Ferrara where he got a degree in canon law) before returning to a position in the cathedral at Frombork, Poland. Here he spent the majority of his time as a physician, lawyer, and church administrator. In his spare time he dabbled in astronomy. Copernicus was very interested in the Pythagorean mathematics, for he also believed in a harmony of the cosmos. He was, however, not apparently very interested in making new astronomical observations.
By 1514 Copernicus had laid out his heliocentric view of the universe in a manuscript entitled Commentariolus. This short work would put forward most of the elements of the heliocentric system some 39 years before his major manuscript on the theory, De revolutionibus orbium coelestium ("On the Revolutions of the Heavenly Spheres"), was published. While many of the ideas Copernicus was proposing were radical, he still adhered to the Aristotelian view that everything moved in perfect circles, on solid celestial spheres, and moved via the physics espoused by Aristotle. Indeed, he even kept Ptolemy's epicycles in modified form in his new model. But Copernicus knew that his new theory would upset the Church, and he kept it relatively quiet. By moving the Sun to the center of the universe, man was no longer so important, and this could not stand in the view of the Church.
.....
"Note that this system proposed a radical new idea: the Earth spun on its axis once per day! His theory also gave a simple explanation for the retrograde motions of the planets: the Earth catches up and passes them once each year. He also argued that his system was more elegant than the traditional geocentric system. However, the predictive power of his model was not substantially better than its competition. Besides removing humanity from the central place in God's creation, there were some obvious "problems" with this theory:
1) If the Earth is spinning so fast, how do we remain attached to it--how do birds find their way home again with all of this spinning? [Of course, the counterpoint is what keeps us attached to the spherical Earth in the Geocentric Universe?]
2) Why do the stars not show a parallax? They have to be at immense distances to show no parallax, and thus there is this great empty space in between the last sphere (Saturn) and that containing the stars. [The counter-argument to this is that if all of the stars are at the same distance, no parallax can be measured since all stars would shift the same amount!]
http://astronomy.nmsu.edu/tharriso/ast110/class06.html < click